Peter Schneider
                        
                                        
                        
    
    
            
            
            
                                                                
    
                    
                
                    
    
    
                
    
                    
            
                
            
            
                                                    
    
                    
                
                    
    
    
                
    
                    
            
                
            
            
                                                    
    
                    
                
                    
    
    
                
    
                    
            
                
            
            
                                                    
    
                    
                
                    
    
    
                
    
                    
            
                
            
            
                                                    
    
                    
                
                    
    
    
                
    
                    
            
                
            
            
                                    
            
        
                                                
                Galois Representations and (Phi, Gamma)-Modules
Ebook (EPUB Format)
            Understanding Galois representations is one of the central goals of number theory. Around 1990, Fontaine devised a strategy to compare such p-adic Galois representations to seemingly much simpler objects of (semi)linear algebra, the so-called etale (phi, gamma)-modules. This book is the first to provide a detailed and self-contained introduction to this theory. The close connection between the absolute Galois groups of local number fields and local function fields in positive characteristic is established using the recent theory of perfectoid fields and the tilting correspondence. The author works in the general framework of Lubin-Tate extens…
        
            Mehr
        
        
            
                
                    
                        
                    
            
        
    
                                    Beschreibung
                        Understanding Galois representations is one of the central goals of number theory. Around 1990, Fontaine devised a strategy to compare such p-adic Galois representations to seemingly much simpler objects of (semi)linear algebra, the so-called etale (phi, gamma)-modules. This book is the first to provide a detailed and self-contained introduction to this theory. The close connection between the absolute Galois groups of local number fields and local function fields in positive characteristic is established using the recent theory of perfectoid fields and the tilting correspondence. The author works in the general framework of Lubin-Tate extensions of local number fields, and provides an introduction to Lubin-Tate formal groups and to the formalism of ramified Witt vectors. This book will allow graduate students to acquire the necessary basis for solving a research problem in this area, while also offering researchers many of the basic results in one convenient location.
                    
                CHF 69.00
Preise inkl. MwSt. und Versandkosten (Portofrei ab CHF 40.00)
Versandkostenfrei
Produktdetails
- ISBN: 978-1-316-99083-4
- EAN: 9781316990834
- Produktnummer: 24247382
- Verlag: Cambridge University Press
- Sprache: Englisch
- Erscheinungsjahr: 2017
- Seitenangabe: 0 S.
- Plattform: EPUB
- Masse: 8'565 KB
100 weitere Werke von Peter Schneider:
                                    Ebook (PDF Format)
                                
                            
                                                            CHF 58.05
                            
                                                                
            
                                    Ebook (PDF Format)
                                
                            
                                                            CHF 336.80
                            
                                                                
            
                                    Ebook (PDF Format)
                                
                            
                                                            CHF 336.80
                            
                                                                
            
                                    Ebook (PDF Format)
                                
                            
                                                            CHF 336.80
                            
                                                                
            
                                    Ebook (PDF Format)
                                
                            
                                                            CHF 336.80
                            
                                                                
            
                                    Ebook (PDF Format)
                                
                            
                                                            CHF 336.80
                            
                                                                
            
                                    Ebook (PDF Format)
                                
                            
                                                            CHF 336.80
                            
                                                                
            
                                    Ebook (PDF Format)
                                
                            
                                                            CHF 336.80
                            
                                                                
            Bewertungen
0 von 0 Bewertungen
Anmelden
                                                    Keine Bewertungen gefunden. Seien Sie der Erste und teilen Sie Ihre Erkenntnisse mit anderen.
                                            
                
                                                                 
                                                                        